

O que é um Soft Sensor ou Sensor Virtual?

Sensor virtual é um modelo matemático que calcula, com base nos dados disponíveis nos sistemas de automação, uma variável importante para o monitoramento do processo. Para o sistema de controle o resultado do cálculo se comporta como um novo sensor inserido no processo.

Algumas aplicações comuns são a inferência em tempo real de variáveis de laboratório, em substituição a instrumentos de custo elevado ou para limpeza de medições excessivamente ruidosas.

Para a criação de Sensores Virtuais no Proficy Troubleshooter, precisamos:

- Obter e analisar dados históricos confiáveis.
- Treinar um modelo com os dados históricos no Proficy Troubleshooter.
- Modificar o projeto para receber dados em tempo real.
- Validar os resultados

1. Conhecendo a indústria de Saneamento

O princípio de lodo ativado é um processo que lida com o tratamento de esgotos e efluentes industriais. Uma vez que os efluentes receberam aeração e tratamento biológico suficientes, eles são descarregados em tanques de clarificação para posteriormente passar por tratamento químico adicional de purificação. Parte do material residual, o lodo ativado, é devolvido para o sistema de aeração para ser realimentado ao tanque de entrada de novos efluentes.

Para este estudo de caso, o KPI **Settled Solids** indica quanto lodo ainda está suspenso nos efluentes ou na água limpa. É uma medida de laboratório, amostrada 1 ou 2 vezes por semana. Essa medida é importante para o controle da recirculação do lodo e da drenagem do lodo, e é utilizado em conjunto com outros indicadores orgânicos, tais como nitratos, amônia e oxigênio.

O problema com o uso de **Settled Solids** como uma medição é que a amostragem é efetuada apenas algumas vezes por semana e, portanto, os resultados ainda precisam ser recebidos do laboratório após análise. Isso é muito tempo de espera para o controle de processo ideal. A forma mais eficaz e mais rápida de acompanhamento do processo é a implantação de um sensor virtual, que utiliza um modelo de processo usando outras variáveis conhecidas como

entradas para o modelo. O sensor é então utilizado para o acompanhamento online do controle do processo, com feedback quase em tempo real para os operadores.

Abaixo temos uma figura mostrando o fluxograma do processo.

2. Utilizando o Proficy Troubleshooter na construção de um Sensor Virtual

Passo 1 – Escolha e importação dos dados

O Proficy Troubleshooter permite que dados sejam importados de diversas fontes. Para este exemplo, os dados serão lidos diretamente do **Proficy Historian**.

Vamos selecionar as variáveis e o período que queremos analisar.

Passo 2 – Preparação dos dados

RUA SILVIA, 110 / 8º andar / BELA VISTA • 01331-010 SÃO PAULO/SP • (11) 3178-1700 • www.aquarius.com.br

Diversas técnicas estatísticas de análise estão disponíveis, como mostra a figura abaixo.

Field	egory	Limits	Low Low	Low	High	High High	Lag (seconds
1404(Apration	odefined	Enable		0 36.1055263569084	60.8075397225586	100	
A nália a c	hed	Enable		0 0	32.6674856275916	52.4010009765625	
Analise	Je hed	Enable	~ ~	0 0	34.9038636728601	54.4858016967773	
Frequênc			rsao	00	63.9145716735471	93.375602722168	
	hed	Enable		0 11.6185086916269	77.1630719489341	93.6563034057617	
WW_Aeration_Point	Undefined	Enable		0 42.6752360689481	60.2896593219277	89.8876037597656	
WW_Aeration_Point	Undefined	Enable		0 38.8054713855914	57.233578703829	100	
WW_Aeration_Point	Undefined	Enable	0.16037000715732	37.2830227285789	63.2117648733787	83.1921005249023	
WW_ammonia_mea	Undefined	Enable		00	2.23656891982623	10.0087003707886	
WW_dry_substanc	Undefined	Enable	1.15740997716784	3.14047724797201	4.11030559319855	5.78960990905762	
WW_effluent_flow	Undefined	Enable		0 1674.7060111421	4179.32271145805	8000	
WW_effluent_jack	Undefined	Enable		0 7846.11368950196	10927.7255933915	12026.2001953125	
WW_effluent_recirc	Undefined	Enable		0 3683.13731482046	7174.64021100468	8293	
WW_nitrate_measur	. Undefined	Enable		0 0	6.11428670630476	10	/
WW_nitrate_measur	. Undefined	Enable	0.26374399662017	2.57874725734258	7.33069094100574	15.7096004486084	
WW_nitrate_measur	. Undefined	📊 🟧 Enable		0 2.01494543630633	8.42687754555962	18.2653999328613	
WW_nitrate_measur	. Undefined	Enable	0.1667390018701	2.83510504440453	11.1587778413149	22.1331996917725	
WW_Oxygen_Meas	Undefined	Enable CI		0 1.15801857095275	2.8087786061102	9.9942/0211221	so de
WW_Oxygen_Meas	Undefined	Enable	4.82253002701327	4.82253002701327	0.97843155363665	proc	esso
Histor	ama	Enable	5.78704010695219	0.285687063559946	2.30669461273603	7.30903005599976	0000
WW_Dxygen_Illes	Undefined	and Frable		0 0.743468362452005	1.7712318962344	10	
WS_Oxygen_Meas	Undefined	Enable		5 5	5	5	
WW_Precipitate_mm	Undefined	Enable		0 0	1.1355560718194	7	
WW_Secondary_Se.	. Undefined	Enable	-4.0509298443794	4.0509298443794	31.3779516452299	123.499000549316	
WW_section_1_air	Undefined	Enable		0 921.418145476437	1386.74587568758	1600	-
WW_section_2_air	Undefined	Enable		0 3512.37709107837	6358.53069425798	7500	
vvvv_section_3_air	Undefined	Lnable	60	2350.98400577681	8916.69651828466	12667	
WWV_sec_Sediment	Undefined	Enable	2.1942500025034E	5.27288217849258	7.43539614936603	10.5026998519897	
WW_Settled_Solids	Target	- Wat	riz de Corre	laçao	475.326246047104	.530	
WW_supply_flow	Undefined	Enable	/	0 2453.06591949095	4812.54899956929	5291.669921875	
WW_Temperature	Undefined	Enable	15.606900215148	39 16.1994243610458	18.5580857742175	23	

Passo 3 – Construção do modelo

No terceiro passo, geramos o modelo baseado em redes neurais e um modelo baseado em regras. A figura abaixo ilustra os resultados obtidos com a modelagem.

Passo 4 – Exportando o modelo para o Architect

Todas as ações tomadas no Troubleshooter, assim como o modelo gerado, agora podem ser exportadas para o Architect e este pode ser implantado em tempo real. Vamos salvar o projeto clicando no botão [**Save Blueprint**] como na figura abaixo. Na sequência, o Architect se iniciará carregando seu projeto.

Passo 5 – Conectando o modelo à planta

O modelo que foi gerado durante a etapa de modelagem precisa ser alterado para a implantação em tempo real. O projeto tem que ser configurado para ler os dados a partir de uma fonte OPC que busca dados da planta.

Portanto, vamos trocar a fonte de dados histórica por uma conexão OPC com a planta.

Passo 6 – Visualização e validação dos resultados

O projeto pode ser executado em tempo real e os valores gerados pelo modelo serão plotados. Deve levar algum tempo para reunir dados suficientes para um gráfico de tendência, uma vez que a execução está ocorrendo em tempo real.

Na figura abaixo, mostramos a comparação entre os resultados do sensor virtual (vermelho) e os dados coletados por laboratório (verde).

